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Orthogonal vectors
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Two vectors u and v in R™ are orthogonal (to each other) if u-v = 0.

Suppose V is an inner product space.
Two vectors v,w € V are called orthogonal if (v,w) = 0.

The Pythagorean Theorem
Two vectors u and v are orthogonal if and only if ||u + v||? = [|u]|? + ||v]|?
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Orthogonal Sets

O A set of vectors {a4, ..., a;} in R™ is orthogonal set if each pair of distinct
vectors is orthogonal (mutually orthogonal vectors).

Definition

A basis B of an inner product space V is called an orthonormal basis of V if
a) (vyw)=0forallv+wE€B, and (mutual orthogonality)

b) ||v||=1forallv €B. (normalization)

set of n—vectors ay, ..., ay are (mutually) orthogonal if a; L a; for i # j
They are normalized if ||a;|| = 1fori=1,..,k

They are orthonormal if both hold

o0 o0 o

Can be expressed using inner products as

1 i=j
T —
ai“]"{o i #j
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Orthogonal Sets

Example

L Zero vector is orthogonal to every vector in vector space V
[ The standard basis of R™ or C" is an orthogonal set with respect to the
standard inner product.
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Orthogonal Sets

Theorem

If S ={a4, ..., a;} is an orthogonal set of nonzero vectors in R™, then S is
linearly independent and is a basis for the subspace spanned by S.

Proof
If k = n, then prove that S is a basis for R™
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Linear combinations of orthonormal vectors

Corollary

L A simple way to check if an n—vector vy is a linear combination of the
orthonormal vectors ay, ..., a, if and only if:

y=(aly)a; + ... + (aby)a
O For orthogonal vectors aq, ..., a:

y =caq+ -+ cpag

V. Clj
aj.aj

Cj=
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Orthonormal vectors

Independence-dimension inequality

If the n-vectors a4, ..., a; are linearly independent, then k < n.

O Orthonormal sets of vectors are linearly independent
O By independence—dimension inequality, must have k < n

a When k =n,aq,...,a, are an orthonormal basis
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Orthonormal bases

Example

O Standard unit n-vectors eq, .., e,

O The 3-vectors
0|, —| 11, — -1
—1 V2 0 V2 0

L The 2-vectors shown below

\ -

U The standard basis in B,(x) [—1,1] (be the set of real-valued
polynomials of degree at most n.)
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Linear combinations of orthonormal vectors

Example

Write x as a linear combination of a4, a,, as?

x:2,a1: O,a2=—1,a3=——1
3 -1 ﬁ() V2 0
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Orthogonal Subspaces

Definition

U Two subspaces W, and W, of the same space V are orthogonal, denoted by
W, L W,, if and only if each vector w; € W, is orthogonal to each vector
w, € W, for all wy,w, in W;, W, respectively:

<wy,w,>=0
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Orthogonal Complements

Definition

U If a vector z is orthogonal to every vector in a subspace W of R™, then z is
said to be orthogonal to W.

[ The set of all vectors z that are orthogonal to W is called the orthogonal
complement of W and is denoted by W+

Example —
W be a plane through the origin in R3. N "
L=Wtand W =Lt 0
VA
L
=
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Orthogonal Complements

Theorem

W+ is a subspace of R™.

Theorem
witnw ={0}.

Important

We emphasize that W; and W, can be orthogonal without being complements.
W; = span((1,0,0)) and W, = span((0,1,0)).

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

17



CE282: Linear Algebra

Gram—-Schmidt Algorithm

Hamid R. Rabiee & Maryam Ramezani

19



Gram—Schmidt (orthogonalization) algorithm

0 Find orthonormal basis for span {ay, a,, ..., ax}

0 Geometry:
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Gram—Schmidt (orthogonalization) algorithm

0 Find orthonormal basis for span {ay, a,, ..., ax}

o Algebra:
il = ||:||
2)q; = a —(q10)q1 = G2 = ”Z:j”
3)qz =as — (qlTag)Ch - (q2Ta3)q2 = (3 = ”Z:i”
K) Tk = ax — (@] @) qr — = — (k-1 ) k-1 = W= %
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Gram—Schmidt (orthogonalization) algorithm

Example

1 1 2
Find orthogonal set fora = |0]|,b =10],c=|1
1 0 0
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Gram—Schmidt (orthogonalization) algorithm

0 Why {q4, 95, ..., qxl is a orthonormal basis for span {a;, a,, ..., a;l?

o 191,93, ..., qx} are normalized.
o 191,95, ..., qxl is a orthogonal set
o a; is a linear combination of {q4, q5, ..., q;]

spanlqy, qy, ..., qk} = spanlay, ay, ..., ayl

Q gq; is a linear combination of {aq, a,, ..., a;}
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Gram—Schmidt (orthogonalization) algorithm

a Given n—vectors aq, ..., ai

fori=1,..,k
i.  Orthogonalization: §; = a; — (q1 a;))q1 — - — (q{—1a;)qi_1
2. Test for linear dependence: if g; = 0, quit
3. Normalization: gq; = IIZ:EII

Note

» If G-S does not stop early (in step 2), aq, ..., a, are linearly independent.

* If G-S stops early in iteration i = j, then a; is a linear combination of
Ay, -, 4j_q (so ay, ..., a; are linearly dependent)

a; = (g7 a;)qq + -+ (4]-19;)qj-1
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Complexity of Gram—Schmidt algorithm

0 Gram-Schmidt algorithm gives us an explicit method for
determining if a list of vectors is linearly dependent or
independent.

O What is complexity and number of flops for this algorithm?

o 0(nk?)
a Given n—vectors a4, ...,a; fori =1, ..,k
i.  Orthogonalization: §; = a; — (q1 a;))q1 — - — (q—1a;)qi_1
2. Test for linear dependence: if g; = 0, quit
3. Normalization: gq; = ”Z:;”
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Orthonormal basis

Corollary

Every finite—dimensional inner product space has an orthonormal basis.
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Conclusion

Existence of Orthonormal Bases

L Every finite—dimensional inner product space has an orthonormal basis.

O Since finite—dimensional inner product spaces (by definition) have a basis
consisting of finitely many vectors, and the Gram—Schmidt process tells us
how to convert that basis into an orthonormal basis, we now know that

every finite—dimensional inner product space has an orthonormal basis.
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Example

Example

Find an orthonormal basis for P,(x) in [—1, 1] with respect to the inner
product

1
(f,g) = J_lf(x)g(x)dx

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 31



CE282: Linear Algebra

Projection

Hamid R. Rabiee & Maryam Ramezani

32



Projection

O Finding the distance from a point B to line [ = Finding the length of
line segment BP

R B
L]

O AP: projection of AB onto the line [

Definition
If u and v are vectors in R™ and u # 0, then the projection of v onto u is the
vector proj,(v) defined by %
u-v \
r0jy(V) = |——]u \
proju(v) (u : u) \ ,

*

The projection of v onto u
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Orthogonal Projection of y onto W

The Orthogonal Decomposition Theorem
Let W be a subspace of R™. Then each y in R™ can be written uniquely in the

form: .
_ PIOJw Y-
y —Oi z (1)

where ¥ is in Wand z is in W*. In fact, if {u,, ...,up} is any orthogonal basis of

W, then

y-uy y-up
u1+---+—up (2>
ul.ul up'up

y
andz=y — ¥y

Important

The uniqueness of the decomposition (1) shows that the
orthogonal projection ¥ depends only on W and not on the W

particular basis used in (2).

¥ = proj,y

The orthogonal projection of ¥ onto W,
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Orthogonal Projection of y onto W

Theorem
Let W be a subspace of V. Then each u in V can be written uniquely in the
form:
u=y+y
Proof
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