Orthogonality

Linear Algebra

Department of Computer Engineering
Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Orthogonality

Gram-Schmidt Algorithm

Orthogonal Complements

Projection

Orthogonality

Orthogonal vectors

- Geometry
- Algebra

https://youtu.be/dqdSzqsm7bY

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal (to each other) if $\mathbf{u} \cdot \mathbf{v}=\mathbf{0}$.
Suppose V is an inner product space.
Two vectors $\mathbf{v}, \mathbf{w} \in V$ are called orthogonal if $\langle\mathbf{v}, \mathbf{w}\rangle=0$.

The Pythagorean Theorem

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$

Orthogonal Sets

- A set of vectors $\left\{a_{1}, \ldots, a_{k}\right\}$ in R^{n} is orthogonal set if each pair of distinct vectors is orthogonal (mutually orthogonal vectors).

Definition

A basis B of an inner product space V is called an orthonormal basis of V if
a) $\langle\mathbf{v}, \mathbf{w}\rangle=0$ for all $\mathbf{v} \neq \boldsymbol{w} \in B$, and (mutual orthogonality)
b) $\|\mathbf{v}\|=1$ for all $\mathbf{v} \in B$.
(normalization)

- set of n-vectors a_{1}, \ldots, a_{k} are (mutually) orthogonal if $a_{i} \perp a_{j}$ for $i \neq j$
- They are normalized if $\left\|a_{i}\right\|=1$ for $i=1, \ldots, k$
- They are orthonormal if both hold
- Can be expressed using inner products as

$$
a_{i}^{T} a_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Orthogonal Sets

Example

\square Zero vector is orthogonal to every vector in vector space V
\square The standard basis of \mathbb{R}^{n} or \mathbb{C}^{n} is an orthogonal set with respect to the standard inner product.

Orthogonal Sets

Theorem

If $S=\left\{a_{1}, \ldots, a_{k}\right\}$ is an orthogonal set of nonzero vectors in R^{n}, then S is linearly independent and is a basis for the subspace spanned by S.

Proof

$$
\text { If } \mathrm{k}=\mathrm{n} \text {, then prove that } \mathrm{S} \text { is a basis for } R^{n}
$$

Corollary

A simple way to check if an n-vector y is a linear combination of the orthonormal vectors a_{1}, \ldots, a_{k}, if and only if:

$$
y=\left(a_{1}^{T} y\right) a_{1}+\ldots+\left(a_{k}^{T} y\right) a_{k}
$$

\square For orthogonal vectors a_{1}, \ldots, a_{k} :

$$
\begin{gathered}
y=c_{1} a_{1}+\cdots+c_{k} a_{k} \\
c_{j}=\frac{y \cdot a_{j}}{a_{j} \cdot a_{j}}
\end{gathered}
$$

Independence-dimension inequality
If the n -vectors a_{1}, \ldots, a_{k} are linearly independent, then $k \leq n$.

- Orthonormal sets of vectors are linearly independent
- By independence-dimension inequality, must have $k \leq n$
- When $k=n, a_{1}, \ldots, a_{n}$ are an orthonormal basis

Orthonormal bases

Example

\square Standard unit n-vectors e_{1}, \ldots, e_{n}

- The 3 -vectors

$$
\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

The 2-vectors shown below

The standard basis in $P_{n}(x)[-1,1]$ (be the set of real-valued polynomials of degree at most n.)

Example

Write x as a linear combination of a_{1}, a_{2}, a_{3} ?

$$
x=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], a_{1}=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right], a_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], a_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

Orthogonal Subsets

Orthogonal Subspaces

Definition

Two subspaces W_{1} and W_{2} of the same space V are orthogonal, denoted by $W_{1} \perp W_{2}$, if and only if each vector $w_{1} \in W_{1}$ is orthogonal to each vector $w_{2} \in W_{2}$ for all w_{1}, w_{2} in W_{1}, W_{2} respectively:

$$
\left\langle w_{1}, w_{2}\right\rangle=0
$$

Orthogonal Complements

Orthogonal Complements

Definition

If a vector z is orthogonal to every vector in a subspace W of R^{n}, then z is said to be orthogonal to W .

The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}

Example

W be a plane through the origin in \mathbb{R}^{3}.
$L=W^{\perp}$ and $W=L^{\perp}$

Orthogonal Complements

Theorem

W^{\perp} is a subspace of \mathbb{R}^{n}.

Theorem

$$
W^{\perp} \cap W=\{\mathbf{0}\}
$$

Important

We emphasize that W_{1} and W_{2} can be orthogonal without being complements.

$$
W_{1}=\operatorname{span}((1,0,0)) \text { and } W_{2}=\operatorname{span}((0,1,0)) .
$$

Gram-Schmidt Algorithm

- Find orthonormal basis for span $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$
- Geometry:

- Find orthonormal basis for span $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$
- Algebra:

1) $q 1=\frac{a_{1}}{\left\|a_{1}\right\|}$
2) $\widetilde{q_{2}}=a_{2}-\left(q_{1}^{T} a_{2}\right) q_{1} \rightarrow q_{2}=\frac{\widetilde{q_{2}}}{\left\|\widetilde{q_{2}}\right\|}$
3) $\widetilde{q_{3}}=a_{3}-\left(q_{1}^{T} a_{3}\right) q_{1}-\left(q_{2}^{T} a_{3}\right) q_{2} \rightarrow q_{3}=\frac{\widetilde{q_{3}}}{\left\|\widetilde{q_{3}}\right\|}$

$$
\text { k) } \widetilde{q_{k}}=a_{k}-\left(q_{1}^{T} a_{k}\right) q_{1}-\cdots-\left(q_{k-1}^{T} a_{k}\right) q_{k-1} \rightarrow q_{k}=\frac{\widetilde{q_{k}}}{\left\|\widetilde{q_{k}}\right\|}
$$

Gram-Schmidt (orthogonalization) algorithm

Example

Find orthogonal set for $a=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], b=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{c}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$

- Why $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ is a orthonormal basis for span $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$?
- $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ are normalized.
- $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ is a orthogonal set
- a_{i} is a linear combination of $\left\{q_{1}, q_{2}, \ldots, q_{i}\right\}$
$\operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$
- q_{i} is a linear combination of $\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$
- Given n-vectors a_{1}, \ldots, a_{k} for $i=1, \ldots, k$

1. Orthogonalization: $\widetilde{q}_{i}=a_{i}-\left(q_{1}^{T} a_{i}\right) q_{1}-\cdots-\left(q_{i-1}^{T} a_{i}\right) q_{i-1}$
2. Test for linear dependence: if $\widetilde{q}_{i}=0$, quit
3. Normalization: $q_{i}=\frac{\widetilde{q_{i}}}{\left\|\widetilde{q_{i}}\right\|}$

Note

- If G-S does not stop early (in step 2), a_{1}, \ldots, a_{k} are linearly independent.
- If G-S stops early in iteration $i=j$, then a_{j} is a linear combination of a_{1}, \ldots, a_{j-1} (so a_{1}, \ldots, a_{k} are linearly dependent)

$$
a_{j}=\left(q_{1}^{T} a_{j}\right) q_{1}+\cdots+\left(q_{j-1}^{T} a_{j}\right) q_{j-1}
$$

- Gram-Schmidt algorithm gives us an explicit method for determining if a list of vectors is linearly dependent or independent.
- What is complexity and number of flops for this algorithm?
- $O\left(n k^{2}\right)$
- Given n -vectors a_{1}, \ldots, a_{k} for $i=1, \ldots, k$

1. Orthogonalization: $\widetilde{q}_{i}=a_{i}-\left(q_{1}^{T} a_{i}\right) q_{1}-\cdots-\left(q_{i-1}^{T} a_{i}\right) q_{i-1}$
2. Test for linear dependence: if $\widetilde{q}_{i}=0$, quit
3. Normalization: $q_{i}=\frac{\widetilde{q_{i}}}{\left\|\widetilde{q_{i}}\right\|}$

Orthonormal basis

Corollary

Every finite-dimensional inner product space has an orthonormal basis.

Conclusion

Existence of Orthonormal Bases

\square Every finite-dimensional inner product space has an orthonormal basis.
\square Since finite-dimensional inner product spaces (by definition) have a basis consisting of finitely many vectors, and the Gram-Schmidt process tells us how to convert that basis into an orthonormal basis, we now know that every finite-dimensional inner product space has an orthonormal basis.

Example

Example

Find an orthonormal basis for $P_{2}(x)$ in $[-1,1]$ with respect to the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Projection

- Finding the distance from a point B to line $l=$ Finding the length of line segment $B P$
- $A P$: projection of $A B$ onto the line l

Definition

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n} and $\mathbf{u} \neq \mathbf{0}$, then the projection of \mathbf{v} onto \mathbf{u} is the vector $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ defined by

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

Orthogonal Projection of y onto W

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Then each \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form:

$$
\mathbf{y}=\overrightarrow{\mathbf{y}}+\mathbf{z} \operatorname{proj}_{W} \mathbf{y}
$$

where $\hat{\mathbf{y}}$ is in W and z is in W^{\perp}. In fact, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{p}}\right\}$ is any orthogonal basis of W, then

$$
\begin{equation*}
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{\mathrm{p}}}{\mathbf{u}_{\mathrm{p}} \cdot \mathbf{u}_{\mathrm{p}}} \mathbf{u}_{\mathrm{p}} \tag{2}
\end{equation*}
$$

and $z=\mathbf{y}-\hat{\mathbf{y}}$

Important

The uniqueness of the decomposition (1) shows that the orthogonal projection $\hat{\mathbf{y}}$ depends only on W and not on the particular basis used in (2).

The orthogonal projection of \mathbf{y} onto W.

Orthogonal Projection of y onto W

Theorem
Let W be a subspace of V. Then each \mathbf{u} in V can be written uniquely in the form:

$$
\mathbf{u}=\hat{\mathbf{y}}+\boldsymbol{y}
$$

Proof

- Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- Chapter 6: Linear Algebra David Cherney
- Linear Algebra and Optimization for Machine Learning
- Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares

