
Orthogonality 

Linear Algebra
Department of Computer Engineering 

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani maryam.ramezani@sharif.edu

mailto:rabiee@sharif.edu
mailto:maryam.ramezani@sharif.edu


Overview

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 2

Orthogonality

Gram–Schmidt Algorithm

Orthogonal Complements

Projection



Orthogonality

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 3



❑ Geometry

❑ Algebra

Orthogonal vectors
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Two vectors 𝐮 and 𝐯 in ℝ𝑛 are orthogonal (to each other) if 𝐮 ∙ 𝐯 = 𝟎.

Suppose 𝑉 is an inner product space. 

Two vectors 𝐯,𝐰 ∈ 𝑉 are called orthogonal if 𝐯,𝐰 = 0. 

The Pythagorean Theorem

Two vectors 𝐮 and 𝐯 are orthogonal if and only if 𝐮 + 𝐯 2 = 𝐮 2 + 𝐯 2

https://youtu.be/dqdSzqsm7bY



❑ A set of vectors 𝑎1, … , 𝑎𝑘 in 𝑅𝑛 is orthogonal set if each pair of distinct 
vectors is orthogonal (mutually orthogonal vectors).

Orthogonal Sets
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Definition

A basis 𝐵 of an inner product space 𝑉 is called an orthonormal basis of 𝑉 if
a) 𝐯,𝐰 = 0 for all 𝐯 ≠ 𝒘 ∈ 𝐵, and         (mutual orthogonality)
b) 𝐯 = 1 for all 𝐯 ∈ 𝐵.                         (normalization)

❑ set of n-vectors 𝑎1, … , 𝑎𝑘 are (mutually) orthogonal if 𝑎𝑖 ⊥ 𝑎𝑗 for 𝑖 ≠ 𝑗

❑ They are normalized if 𝑎𝑖 = 1 for 𝑖 = 1,… , 𝑘

❑ They are orthonormal if both hold

❑ Can be expressed using inner products as

𝑎𝑖
𝑇𝑎𝑗 = ቊ

1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗



Orthogonal Sets
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Example

❑ Zero vector is orthogonal to every vector in vector space 𝑉
❑ The standard basis of ℝ𝑛 or ℂ𝑛 is an orthogonal set with respect to the 

standard inner product.



Orthogonal Sets
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Theorem

If 𝑆 = {𝑎1, … , 𝑎𝑘} is an orthogonal set of nonzero vectors in 𝑅𝑛, then 𝑆 is 
linearly independent and is a basis for the subspace spanned by S.

Proof

If k = n, then prove that S is a basis for 𝑅𝑛



Linear combinations of orthonormal vectors
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Corollary

❑ A simple way to check if an n-vector y is a linear combination of the 
orthonormal vectors 𝑎1, … , 𝑎𝑘 , if and only if:

𝑦 = 𝑎1
𝑇𝑦 𝑎1 + … + 𝑎𝑘

𝑇𝑦 𝑎𝑘
❑ For orthogonal vectors 𝑎1, … , 𝑎𝑘:

𝑦 = 𝑐1𝑎1 +⋯+ 𝑐𝑘𝑎𝑘

𝑐𝑗 =
𝑦. 𝑎𝑗

𝑎𝑗 . 𝑎𝑗



❑ Orthonormal sets of vectors are linearly independent 

❑ By independence-dimension inequality, must have 𝑘 ≤ 𝑛

❑ When 𝑘 = 𝑛, 𝑎1, … , 𝑎𝑛 are an orthonormal basis

Orthonormal vectors
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Independence-dimension inequality

If the n-vectors 𝑎1, … , 𝑎𝑘 are linearly independent, then 𝑘 ≤ 𝑛.



Orthonormal bases
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Example

❑ Standard unit n-vectors 𝑒1, . . , 𝑒𝑛
❑ The 3-vectors

0
0
−1

,
1

2

1
1
0
,

1

2

1
−1
0

❑ The 2-vectors shown below

❑ The standard basis in  𝑃𝑛(𝑥) [−1,1] (be the set of real-valued 

polynomials of degree at most n.)



Linear combinations of orthonormal vectors
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Example

Write 𝑥 as a linear combination of 𝑎1, 𝑎2, 𝑎3?

𝑥 =
1
2
3

,  𝑎1 =
0
0
−1

, 𝑎2 =
1

2

1
1
0

, 𝑎3 =
1

2

1
−1
0



Orthogonal Subsets
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Orthogonal Subspaces
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Definition

❑ Two subspaces 𝑊1 and 𝑊2 of the same space 𝑉 are orthogonal, denoted by
𝑊1 ⊥ 𝑊2, if and only if each vector 𝑤1 ∈ 𝑊1 is orthogonal to each vector
𝑤2 ∈ 𝑊2 for all 𝑤1, 𝑤2 in 𝑊1,𝑊2 respectively:

< 𝑤1, 𝑤2 >= 0



Orthogonal Complements
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Orthogonal Complements
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Definition

❑ If a vector z is orthogonal to every vector in a subspace W of 𝑅𝑛, then z is
said to be orthogonal to W.

❑ The set of all vectors z that are orthogonal to W is called the orthogonal
complement of W and is denoted by 𝑊⊥

Example

W be a plane through the origin in ℝ3. 

𝐿 = 𝑊⊥and 𝑊 = 𝐿⊥



Orthogonal Complements
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Important

We emphasize that 𝑊1 and 𝑊2 can be orthogonal without being complements. 

𝑊1 = 𝑠𝑝𝑎𝑛( 1, 0, 0 ) and 𝑊2 = 𝑠𝑝𝑎𝑛( 0, 1, 0 ).

Theorem

𝑊⊥ is a subspace of ℝ𝑛.

Theorem

𝑊⊥ ∩𝑊 = {𝟎} .



Gram–Schmidt Algorithm
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❑ Find orthonormal basis for span {𝑎1, 𝑎2, … , 𝑎𝑘}

❑ Geometry:

Gram–Schmidt (orthogonalization) algorithm
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❑ Find orthonormal basis for span {𝑎1, 𝑎2, … , 𝑎𝑘}

❑ Algebra:

Gram–Schmidt (orthogonalization) algorithm
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1) 𝑞1 =
𝑎1

𝑎1

2) ෦𝑞2 = 𝑎2 − 𝑞1
𝑇𝑎2 𝑞1 → 𝑞2 =

෦𝑞2

෦𝑞2

3) ෦𝑞3 = 𝑎3 − 𝑞1
𝑇𝑎3 𝑞1 − 𝑞2

𝑇𝑎3 𝑞2 → 𝑞3 =
෦𝑞3

෦𝑞3

.

.

.

k) ෦𝑞𝑘 = 𝑎𝑘 − 𝑞1
𝑇𝑎𝑘 𝑞1 −⋯− 𝑞𝑘−1

𝑇 𝑎𝑘 𝑞𝑘−1 → 𝑞𝑘=
෦𝑞𝑘

෦𝑞𝑘



Gram–Schmidt (orthogonalization) algorithm
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Example

Find orthogonal set for 𝑎 =
1
0
1
, 𝑏 =

1
0
0

, c =
2
1
0



❑ Why  {𝑞1, 𝑞2, … , 𝑞𝑘} is a orthonormal basis for span {𝑎1, 𝑎2, … , 𝑎𝑘}?

o {𝑞1, 𝑞2, … , 𝑞𝑘} are normalized.

o {𝑞1, 𝑞2, … , 𝑞𝑘} is a orthogonal set

o 𝑎𝑖 is a linear combination of {𝑞1, 𝑞2, … , 𝑞𝑖} 

span{𝑞1, 𝑞2, … , 𝑞𝑘} = span{𝑎1, 𝑎2, … , 𝑎𝑘}

❑ 𝑞𝑖 is a linear combination of {𝑎1, 𝑎2, … , 𝑎𝑖} 

Gram–Schmidt (orthogonalization) algorithm
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❑ Given n-vectors 𝑎1, … , 𝑎𝑘

for 𝑖 = 1,… , 𝑘
1. Orthogonalization: 𝑞𝑖 = 𝑎𝑖 − 𝑞1

𝑇𝑎𝑖 𝑞1 −⋯− 𝑞𝑖−1
𝑇 𝑎𝑖 𝑞𝑖−1

2. Test for linear dependence: if 𝑞𝑖 = 0, quit

3. Normalization: 𝑞𝑖 =
෦𝑞𝑖
෦𝑞𝑖

Gram–Schmidt (orthogonalization) algorithm
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Note

• If G-S does not stop early (in step 2), 𝑎1, … , 𝑎𝑘 are linearly independent.

• If G-S stops early in iteration 𝑖 = 𝑗, then 𝑎𝑗 is a linear combination of 

𝑎1, … , 𝑎𝑗−1 (so 𝑎1, … , 𝑎𝑘 are linearly dependent)

𝑎𝑗 = 𝑞1
𝑇𝑎𝑗 𝑞1 +⋯+ 𝑞𝑗−1

𝑇 𝑎𝑗 𝑞𝑗−1



❑ Gram-Schmidt algorithm gives us an explicit method for 
determining if a list of vectors is linearly dependent or 
independent.

❑ What is complexity and number of flops for this algorithm?
o 𝑂(𝑛𝑘2)

❑ Given n-vectors 𝑎1, … , 𝑎𝑘 for 𝑖 = 1,… , 𝑘
1. Orthogonalization: 𝑞𝑖 = 𝑎𝑖 − 𝑞1

𝑇𝑎𝑖 𝑞1 −⋯− 𝑞𝑖−1
𝑇 𝑎𝑖 𝑞𝑖−1

2. Test for linear dependence: if 𝑞𝑖 = 0, quit

3. Normalization: 𝑞𝑖 =
෦𝑞𝑖
෦𝑞𝑖

Complexity of Gram–Schmidt algorithm
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Orthonormal basis
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Corollary

Every finite-dimensional inner product space has an orthonormal basis.



Conclusion
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Existence of Orthonormal Bases

❑ Every finite-dimensional inner product space has an orthonormal basis.

❑ Since finite-dimensional inner product spaces (by definition) have a basis 
consisting of finitely many vectors, and the Gram-Schmidt process tells us 
how to convert that basis into an orthonormal basis, we now know that 

every finite-dimensional inner product space has an orthonormal basis.



Example
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Example

Find an orthonormal basis for 𝑃2 𝑥 𝑖𝑛 −1, 1 with respect to the inner 
product

𝑓, 𝑔 = න
−1

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Projection
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❑ Finding the distance from a point 𝐵 to line 𝑙 = Finding the length of 
line segment 𝐵𝑃

❑ 𝐴𝑃: projection of 𝐴𝐵 onto the line 𝑙

Projection
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Definition

If u and v are vectors in ℝ𝑛 and 𝐮 ≠ 𝟎, then the projection of v onto u is the 
vector 𝑝𝑟𝑜𝑗𝐮 𝐯 defined by

𝑝𝑟𝑜𝑗𝐮 𝐯 =
𝐮 ∙ 𝐯

𝐮 ∙ 𝐮
𝐮



Orthogonal Projection of y onto W
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The Orthogonal Decomposition Theorem

Let 𝑊 be a subspace of ℝ𝑛. Then each y in ℝ𝑛 can be written uniquely in the 
form:

𝐲 = ො𝐲 + 𝐳

where ො𝐲 is in 𝑊and z is in 𝑾⊥. In fact, if {𝐮1, … , 𝐮p} is any orthogonal basis of 

𝑊, then

ො𝐲 =
𝐲 ∙ 𝐮1
𝐮1. 𝐮1

𝐮1 +⋯+
𝐲 ∙ 𝐮p

𝐮p ∙ 𝐮p
𝐮p

and 𝑧 = 𝐲 − ො𝐲

Important

The uniqueness of the decomposition (1) shows that the 
orthogonal projection ො𝐲 depends only on 𝑊 and not on the 
particular basis used in (2).

(1)

(2)



Orthogonal Projection of y onto W
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Theorem
Let 𝑊 be a subspace of 𝑉. Then each u in 𝑉 can be written uniquely in the 
form:

u= ො𝐲 + 𝒚

Proof



❑ Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston

❑ Chapter 6: Linear Algebra David Cherney

❑ Linear Algebra and Optimization for Machine Learning

❑ Introduction to Applied Linear Algebra Vectors, Matrices, and Least 
Squares
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