

Orthogonality

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Orthogonality

Orthogonal vectors

https://youtu.be/dqdSzqsm7bY

□ Algebra

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Suppose *V* is an inner product space. Two vectors $\mathbf{v}, \mathbf{w} \in V$ are called **orthogonal** if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

The Pythagorean Theorem

Two vectors **u** and **v** are orthogonal if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$

CE282: Linear Algebra

Orthogonal Sets

□ A set of vectors $\{a_1, ..., a_k\}$ in \mathbb{R}^n is orthogonal set if each pair of distinct vectors is orthogonal (mutually orthogonal vectors).

Definition

A basis B of an inner product space V is called an orthonormal basis of V if a) $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ for all $\mathbf{v} \neq \mathbf{w} \in B$, and (mutual orthogonality) b) $\|\mathbf{v}\| = 1$ for all $\mathbf{v} \in B$. (normalization)

- □ set of n-vectors $a_1, ..., a_k$ are *(mutually) orthogonal* if $a_i \perp a_j$ for $i \neq j$
- **D** They are *normalized* if $||a_i|| = 1$ for i = 1, ..., k
- □ They are *orthonormal* if both hold
- **C**an be expressed using inner products as

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Example

Zero vector is orthogonal to every vector in vector space V
 The standard basis of Rⁿ or Cⁿ is an orthogonal set with respect to the standard inner product.

Theorem

If $S = \{a_1, ..., a_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and is a basis for the subspace spanned by S.

Proof

If k = n, then prove that S is a basis for R^n

Corollary

 \Box A simple way to check if an n-vector y is a linear combination of the orthonormal vectors a_1, \ldots, a_k , if and only if:

$$y = (a_1^T y)a_1 + \dots + (a_k^T y)a_k$$

 \Box For orthogonal vectors a_1, \ldots, a_k :

$$y = c_1 a_1 + \dots + c_k a_k$$

$$c_j = \frac{y \cdot a_j}{a_j \cdot a_j}$$

Independence-dimension inequality

If the n-vectors a_1, \ldots, a_k are linearly independent, then $k \leq n$.

- Orthonormal sets of vectors are linearly independent
- \Box By independence-dimension inequality, must have $k \leq n$
- \Box When $k = n, a_1, \dots, a_n$ are an *orthonormal basis*

Orthonormal bases

Example

□ Standard unit n-vectors $e_1, ..., e_n$ □ The 3-vectors

$$\begin{bmatrix} 0\\0\\-1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$

□ The 2-vectors shown below

□ The standard basis in $P_n(x)$ [-1,1] (be the set of real-valued polynomials of degree at most n.)

Example

Write x as a linear combination of a_1, a_2, a_3 ?

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ a_1 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \ a_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ a_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Orthogonal Subsets

Definition

 $< w_1, w_2 > = 0$

Orthogonal Complements

Definition

□ If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n , then z is said to be orthogonal to W.

The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}

Example

W be a plane through the origin in \mathbb{R}^3 . $L = W^{\perp}$ and $W = L^{\perp}$

Orthogonal Complements

Theorem

 W^{\perp} is a subspace of \mathbb{R}^n .

Theorem $W^{\perp} \cap W = \{\mathbf{0}\}$.

Important

We emphasize that W_1 and W_2 can be orthogonal without being complements. $W_1 = span((1,0,0))$ and $W_2 = span((0,1,0))$.

Gram-Schmidt Algorithm

- **\Box** Find orthonormal basis for span $\{a_1, a_2, \dots, a_k\}$
- □ Geometry:

- **\Box** Find orthonormal basis for span $\{a_1, a_2, \dots, a_k\}$
- □ Algebra:

1)
$$q1 = \frac{a_1}{\|a_1\|}$$

2)
$$\widetilde{q_2} = a_2 - (q_1^T a_2) q_1 \rightarrow q_2 = \frac{\widetilde{q_2}}{\|\widetilde{q_2}\|}$$

3)
$$\widetilde{q_3} = a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2 \to q_3 = \frac{\widetilde{q_3}}{\|\widetilde{q_3}\|}$$

k)
$$\widetilde{q_k} = a_k - (q_1^T a_k)q_1 - \dots - (q_{k-1}^T a_k)q_{k-1} \rightarrow q_k = \frac{\widetilde{q_k}}{\|\widetilde{q_k}\|}$$

CE282: Linear Algebra

.

Hamid R. Rabiee & Maryam Ramezani

Example

Find orthogonal set for
$$a = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $c = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

- □ Why $\{q_1, q_2, ..., q_k\}$ is a orthonormal basis for span $\{a_1, a_2, ..., a_k\}$?
 - $\circ \{q_1, q_2, \dots, q_k\}$ are normalized.
 - $\circ \{q_1, q_2, \dots, q_k\}$ is a orthogonal set
 - a_i is a linear combination of $\{q_1, q_2, \dots, q_i\}$

 $span\{q_1, q_2, ..., q_k\} = span\{a_1, a_2, ..., a_k\}$

 \Box q_i is a linear combination of $\{a_1, a_2, \dots, a_i\}$

 \Box Given n-vectors a_1, \ldots, a_k

for i = 1, ..., k

- 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\widetilde{q}_i = 0$, quit
- 3. Normalization: $q_i = \frac{\widetilde{q_i}}{\|\widetilde{q_i}\|}$

Note

- If G-S does not stop early (in step 2), a_1, \ldots, a_k are linearly independent.
- If G-S stops early in iteration i = j, then a_j is a linear combination of a_1, \ldots, a_{j-1} (so a_1, \ldots, a_k are linearly dependent) $a_j = (q_1^T a_j)q_1 + \cdots + (q_{j-1}^T a_j)q_{j-1}$

- Gram-Schmidt algorithm gives us an explicit method for determining if a list of vectors is linearly dependent or independent.
- What is complexity and number of flops for this algorithm?
 $O(nk^2)$
- \Box Given n-vectors a_1, \ldots, a_k for $i = 1, \ldots, k$
 - 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
 - 2. Test for linear dependence: if $\tilde{q_i} = 0$, quit
 - 3. Normalization: $q_i = \frac{\widetilde{q_i}}{\|\widetilde{q_i}\|}$

Corollary

Every finite-dimensional inner product space has an orthonormal basis.

Existence of Orthonormal Bases

- □ Every finite-dimensional inner product space has an orthonormal basis.
- □ Since finite-dimensional inner product spaces (by definition) have a basis consisting of finitely many vectors, and the Gram-Schmidt process tells us how to convert that basis into an orthonormal basis, we now know that every finite-dimensional inner product space has an orthonormal basis.

Example

Example

Find an orthonormal basis for $P_2(x)$ in [-1, 1] with respect to the inner product

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)dx$$

Projection

- □ Finding the distance from a point *B* to line l = Finding the length of line segment *BP*
- \Box AP: projection of AB onto the line l

Definition

If u and v are vectors in \mathbb{R}^n and $\mathbf{u} \neq \mathbf{0}$, then the projection of v onto u is the vector $proj_{\mathbf{u}}(\mathbf{v})$ defined by

$$proj_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right)\mathbf{u}$$

e p

The projection of v onto u

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Orthogonal Projection of y onto W

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each **y** in \mathbb{R}^n can be written **uniquely** in the form:

where $\hat{\mathbf{y}}$ is in W and z is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
(2)

and $z = \mathbf{y} - \hat{\mathbf{y}}$

Important

The uniqueness of the decomposition (1) shows that the orthogonal projection $\hat{\mathbf{y}}$ depends only on W and not on the particular basis used in (2).

The orthogonal projection of \mathbf{y} onto W.

Theorem

Let W be a subspace of V. Then each \mathbf{u} in V can be written **uniquely** in the form:

 $\mathbf{u} = \hat{\mathbf{y}} + \mathbf{y}$

Proof

- Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- □ Chapter 6: Linear Algebra David Cherney
- Linear Algebra and Optimization for Machine Learning
- Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares